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13 Reasons why summary

1. Trends in suicidal idetation
presentation were examined
following the release of the netflix
series: “13 Reasons Why”
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Local Trends in Suicide Presentation

1. Achart review was performed at the
Oklahoma CHildren’s Hospital
examining electronic charts for
patients of ages 4-17

2. Patients were identified by ICD codes
indicating a diagnosis of suicidal
ideation or intentional acts of
self-harm from January of 2012- July
2022; each visit was counted as a
separate event, and no patients were
excluded if they met these criteria.

3. Intotal 2698 patient encounters met
inclusion criteria
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Local Trends in Suicide Presentation

1. Historical trends were
examined from January 2012
through July 2022

2. Astrong linear trends was
observed across all available
data: (5=0.02, {(549)=21.316,
R?=0.45)
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Local Trends in Suicide Presentation

1. Hypotheses seek to examine
differences in presentation
patterns succeeding the
pandemic, specifically for an
increase in presentation rates
aligning with Pediatricians’
qualitative reports

2. This hypothesis was examined

using two separate techniques:

a. Change point model
b. Comparison of best fitting ARIMA
coefficients
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Local Trends in Suicide Presentation

The change point model uses ALL available

data to identify historical points when best fitting

models change
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The best fitting ARIMA models uses two isolated
identical length time periods preceding and
succeeding the onset of the pandemic
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Local Trends in Suicide Presentation

The change point model uses ALL available

data to identify historical points when best fitting

models change (Jan 2012: July 2022)
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succeeding the onset of the pandemic:
(Jan 2017: Jan 2020) & (Jan 2020:July 2022)
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Local CP model methods

1. A 2-change-point model was fit
estimating 3 models, the three models
included:

a. Presentations ~ Slope + AR(1)
b. ~ Slope + Var(Month) AR(1)
c. ~Slope AR(1)

2. All parameters were estimated in a
bayesian framework using diffuse &
naive priors

a. 4 chains; 2000 burn-ins;
4000 iterations

3.  Our criterion variables included:

a. The location of any changepoint specific
to the pandemic
b.  Comparison of any pre- and

post-pandemic parameter differences
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Local CP model results
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Local CP model results
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Local CP model summary

1. Achange point was identified to 20 1

have occurred almost concurrently
with the stay-at-home orders

2. The model preceding the
pandemic suggests a weaker
autoregressive parameter
(ar(1)=.14), but a stronger linear
trend (5=.17); following the
pandemic, the linear trend is
negligible (5=.004) but a strong
autoregressive relationship was
observed (ar(1)=.50)
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Local ARIMA model methods

20 1

1.  Two ARIMA models were estimated
across two equidistant time series;

one period preceding and one 154

succeeding the onset of the pandemic

2. Best fitting ARIMA models were
identified through an informatics
allowing for the most optimal number
and parameter of AR(), MA(), and ()
terms to be identified

3. The best fitting pre-pandemic model
was then extended into the
post-pandemic time series to identify
differences in presentation patterns
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Local ARIMA model results
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Local trends summary

1. The CP model details how a shift in 1.  The ARMIA models details how changes in
autoregressive parameters and linear presentation trends saw an increase in
trends occurred almost at the onset of both inertia (AR parameter) & the kurtosis
stay-at-home orders of the distribution (MA parameter)
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Local analyses next steps

1. Having identified differences in pre- and post-pandemic trends, the next set of analyses
seeks to identify variables that can predict patterns in presentations
2. These exploratory analysis sought to identify variables that can identify linear trends in

presentation patterns within the best fitting ARIMA model in the post-pandemic timeseries
a. Oklahoma City metropolitan covid case counts (Center for Systems Science and Engineering (CSSE) JHU)
b.  Oklahoma City metropolitan covid death counts (Center for Systems Science and Engineering (CSSE) JHU)
c. COVID-19 twitter engagement data (Banda et al., 2021)

d. Google mobility data (https://www.google.com/covid19/mobility/)
e. School opening & closing data (Burbio)

3. Each these is included as a linear predictor in the best fitting ARIMA model as well as the 1-
and 2-week lagged variables — FDR correction is performed across all variables within each
lagged distance (e.g. correction is performed across all 2-week lagged variables)


https://www.google.com/covid19/mobility/

Local analyses next steps cont.

1. Some preprocessing must be performed given the complexity of the predictor
variables, for example, there are 363 keywords from the twitter dataset that

are used when discussing COVID-19 (e.g. “economy”, “recovery”)
a. Afactor analysis was performed for the twitter data, as well as the mobility data
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TimeinResidence

Local analyses next steps cont. (Mobility)
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Local ana

yses next steps results
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Local analyses results: movement

1. The only significant linear predictor was the 2-week lagged movement factor
score
2. Model suggests a modest positive effect (5=0.32, {(124)=2.2; Q < 0.05)

3. As the two week prior time in residence increases, suicide presentations
increase

2222222222222222222222222222 - 0
Week Time In Residence



Local analyses summary

1.

Study 1 examined historical trends in presentation rates and sought to identify
differences that were co-occurant with the onset of the pandemic using a
change point model and an ARIMA based approach. Convergent results
suggested an increase in presentation patterns following the pandemic.

Study 2 examined variables that relate to these differences in presentation
rate, examining relationships with COVID cases, deaths, social media
engagement and mobility. The only significant predictor was time in residence
suggesting greater time in residence lead to slight uptick in presentations two
weeks after.



Scaling local results up to the N3C data

1. The next steps include expanding our analyses into the data available from
the N3C

2. Currently performing two separate tasks including:
a. QAtrends:
I.  Suicidal ideation presentation
ii. COVID cases & deaths
b. Building a predictive model which can identify linear trends between presentation patterns &
predictive variables
i. GAM



“Suspect” Trends

QA of presentation patterns:
0 strings?

“Desirable” Trends /\
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“Suspect” Trends

QA of presentation patterns:
Reporting trends?
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Modeling heterogeneity in time series

1. Trends across sites displayed noticeable differences and required more

flexible analytic techniques
2. Ageneralized additive modeling (gam) framework was applied in order to

address the site heterogeneity:
a. Final model: presentations ~ s(time) + s(time:site) + ar(1) + covariateOfinterest + (1|site)
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N3C analyses summary

1. The N3C data allow us to examine trends in suicidal ideation from 2018-
present day

2. However, the veracity of these data requires careful examination as both
strings of 0 counts and suspicious temporal trends may suggest data quality
concerns

3. Modeling the data will require a very flexible technique which can handle
nonlinearities across time and within sites
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